ROADWAY SAFETY INSTITUTE

Human-centered solutions to advance roadway safety

Overview of the USDOT Connected Vehicle Technology and Applications

Chen-Fu Liao

Minnesota Traffic Observatory (MTO)

Department of Civil, Environmental and Geo- Engineering (CEGE)
University of Minnesota

Outline

- Transportation Challenges
- Connected Vehicle (CV)
- CV Technology for Safety
- Conceptual Relationship of CV Applications
- Safety and Mobility Applications
- Closing Remarks

Today's Transportation Challenges

Safety

- √ 33,561 highway deaths in 2012
- ✓ 2.36 million people were injured in motor vehicle traffic crashes

Mobility

- √ 5.5 billion hours of travel delay
- √ \$121 billion cost of urban congestion

Environment

- √ 2.9 billion gallons of wasted fuel
- ✓ 56 billion lbs of additional CO₂

Data Sources: FARS 2012 Data, National Highway Traffic Safety Administration; 2012 Annual Urban Mobility Report, Texas Transportation Institute

Connected Vehicle: 15+ years in the making

Research of technologies and applications that use wireless communications to provide connectivity:

- Among vehicles of all types
- Between vehicles and roadway infrastructure
- Among vehicles, infrastructure and wireless consumer devices

FCC allocated 5.9 GHz (75 MHz band) spectrum – Dedicated Short Range Communications (DSRC) for transportation safety on Oct. 21, 1999

- Low latency, line of sight
- High bandwidth, 300~500m range
- Now an established standard, IEEE 802.11p & SAEJ2735
 (Wireless Access in Vehicular Environments WAVE)

Background and Terminology

- ☐ High speed, low latency wireless communication of vehicle position is a critical element of the CV program.
- Many safety and traffic operations applications based on vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication have been in development for some time.
- ☐ In order for many of these safety applications to work, the system's position accuracy must be sufficient to **locate** each vehicle within a lane.
- ☐ Standards for on-board vehicle-to-vehicle (V2V) safety communications systems have already been developed. These systems must be capable of transmitting the SAE J2735 defined **Basic Safety Message** (BSM).

Technology for Safety – 5.9 GHz DSRC

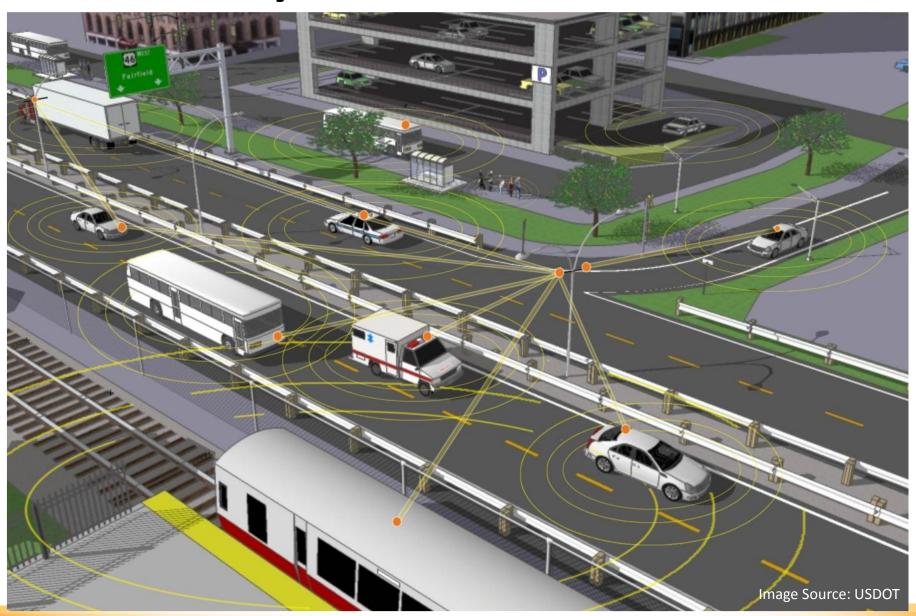
What it is

- Wi-Fi radio adapted for vehicle environment
- Inexpensive to produce in quantity
- Original FCC spectrum allocation in 1999
- FCC revised allocation in 2004 and 2006

How the technology works

- Messages transmitted 10 times/sec (line of sight)
- Basic Safety Message (BSM): vehicle position, speed, heading, acceleration, size, brake system status, etc.
- Privacy is protected (vehicle location is **NOT** recorded or tracked)

Benefits of DSRC technology compared to radar/laser technology


- Reduced price
- Improved reliability → fewer false alarms
- Increased performance → addresses more crash scenarios

Drawback of the technology

- Both vehicles need to be equipped to gain benefit
- Requires security infrastructure

Fully Connected Vehicle

Scope of the Connected Vehicle

Applications

- Safety V2V, V2I, or V2X (pedestrians, bikes, or others)
- Mobility Signal control, flow optimization, emergency response, transit, freight, etc.
- Environment Real-time road weather

Communications Protocols

- Cellular Diagnostics and communications
- Wi-Fi Information and entertainment
- DSRC Safety communications
- Near Field, Bluetooth, Zigbee, etc.

Devices

- Integrated Built in or aftermarket
- Carry-in Carried in by driver/passenger
- Mobile Smartphone or others
- Roadside equipment (RSE)

Potential Benefit of the Connected Vehicle

- Increases in safety, mobility, system efficiency, and access to resources for disadvantaged groups
- Decreases in negative environmental impacts such as vehicle emissions, the need for physical expansion, and noise
- Decreases in undesirable transportation impacts to the environment and society
- Increased opportunities to partner with non-government groups, such as private industry and universities
- Real-time and real-world data to help with transportation planning and transportation system operations
- Reduction of fatalities through weather-related, safety, infrastructure-based, and other applications

Connected Vehicle (CV) Applications

V2I Safety

Red Light Violation Warning
Curve Speed Warning
Stop Sign Gap Assist
Spot Weather Impact Warning
Reduced Speed/Work Zone Warning
Pedestrian in Signalized Crosswalk Warning
(Transit)

V2V Safety

Emergency Electronic Brake Lights (EEBL)

Forward Collision Warning (FCW)
Intersection Movement Assist (IMA)
Left Turn Assist (LTA)
Blind Spot/Lane Change Warning (BSW/LCW)
Do Not Pass Warning (DNPW)
Vehicle Turning Right in Front of Bus Warning (Transit)

Road Weather

Motorist Advisories and Warnings (MAW) Enhanced MDSS Vehicle Data Translator (VDT) Weather Response Traffic Information

(WxTINFO)

Environment

Eco-Approach and Departure at Signalized Intersections
Eco-Traffic Signal Timing
Eco-Traffic Signal Priority
Connected Eco-Driving
Wireless Inductive/Resonance Charging
Eco-Lanes Management
Eco-Speed Harmonization
Eco-Cooperative Adaptive Cruise Control
Eco-Traveler Information
Eco-Ramp Metering
Low Emissions Zone Management
AFV Charging / Fueling Information
Eco-Smart Parking
Dynamic Eco-Routing (light vehicle, transit,

Agency Data

Eco-ICM Decision Support System

freight)

Probe-based Pavement Maintenance
Probe-enabled Traffic Monitoring
Vehicle Classification-based Traffic Studies
CV-enabled Turning Movement & Intersection
Analysis
CV-enabled Origin-Destination Studies
Work Zone Traveler Information

Mobility

Advanced Traveler Information System
Intelligent Traffic Signal System
(I-SIG)
Signal Priority (transit, freight)
Mobile Accessible Pedestrian Signal System (PED-SIG)
Emergency Vehicle Preemption (PREEMPT)
Dynamic Speed Harmonization (SPD-HARM)
Queue Warning (Q-WARN)
Cooperative Adaptive Cruise Control (CACC)

Incident Scene Pre-Arrival Staging Guidance for Emergency Responders (RESP-STG)

Incident Scene Work Zone Alerts for Drivers and Workers (INC-ZONE)

Emergency Communications and Evacuation (EVAC)

Connection Protection (T-CONNECT)
Dynamic Transit Operations (T-DISP)
Dynamic Ridesharing (D-RIDE)

Freight-Specific Dynamic Travel Planning and Performance

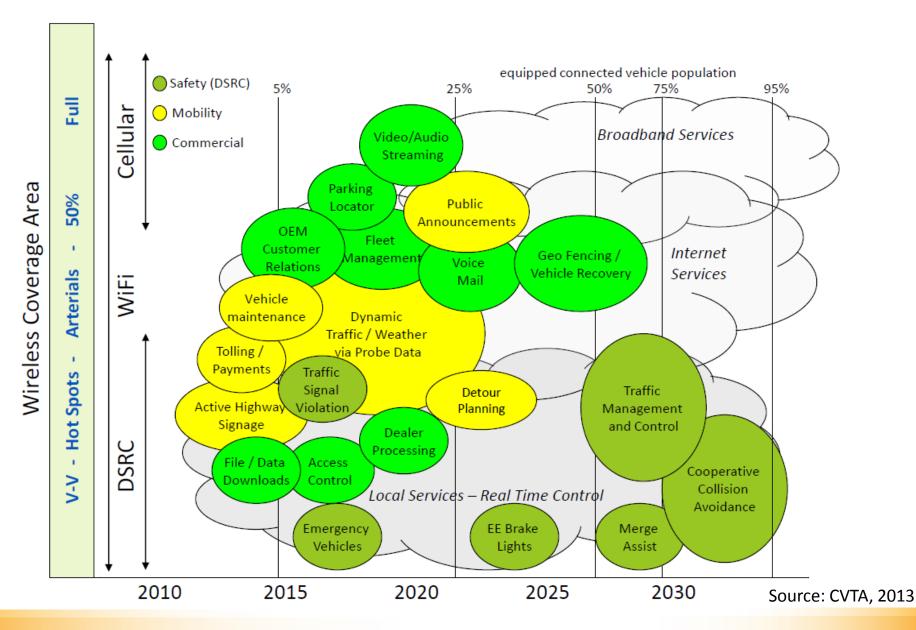
Drayage Optimization

Smart Roadside

Wireless Inspection Smart Truck Parking

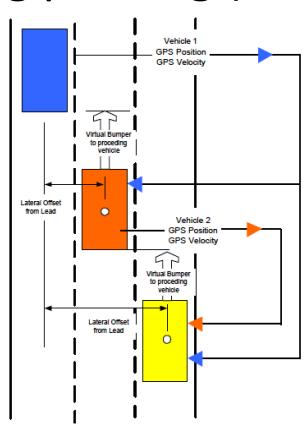
Source: USDOT

Connected Vehicle Safety Applications


V2V

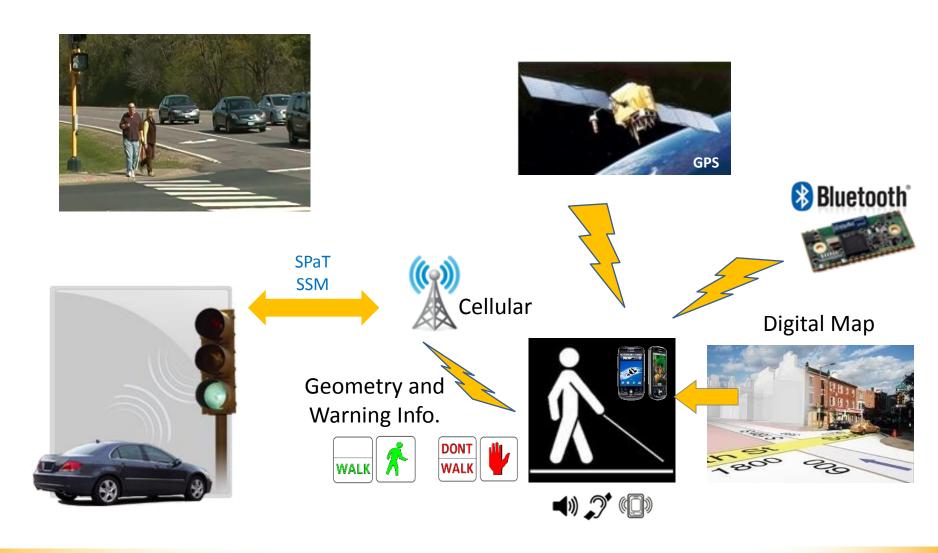
- Forward Collision Warning (FCW)
- Emergency Electronic Brake Light (EEBL)
- Blind Spot/Lane Change Warning (BSW/LCW)
- Do Not Pass Warning (DNPW)
- Intersection Movement Assist (IMA)
- Left Turn Assist (LTA)

V2I


- Curve Speed Warning (CSW)
- Red Light Violation Warning (RLVW)
- Spot Weather Information Warning (SWIW)
- Reduced Speed Zone Warning (RSZW)
- Stop Sign Gap Assist (SSGA)
- Smart Roadside
- Transit Pedestrian Warning

Conceptual Relationships of CV Applications

V2V: Multi-vehicle Gang plowing (2005)

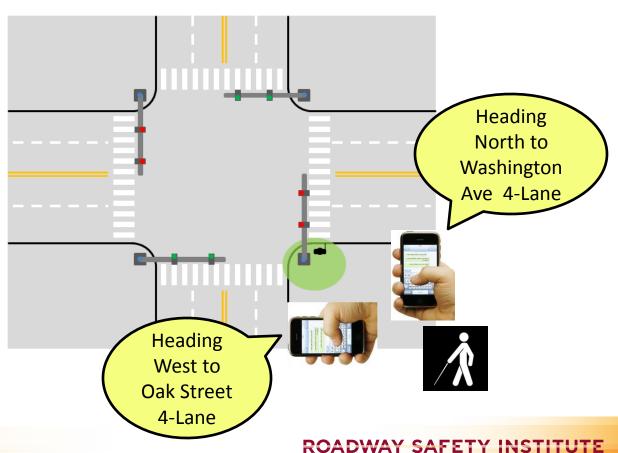


Architecture of multi-vehicle gang plow system. Each plow is equipped with DGPS and a wireless communication transceiver. Each vehicle is identified by its position in the gang. Each vehicle broadcasts its position and speed to every vehicle behind it in the formation.

(Figure 3.1 & 4.1 from "DGPS-Based Gang Plowing," MnDOT report MN/RC – 2005-18, 2005)

Mobile Accessible Pedestrian Signal (MAPS)

Using Wi-Fi / Cellular

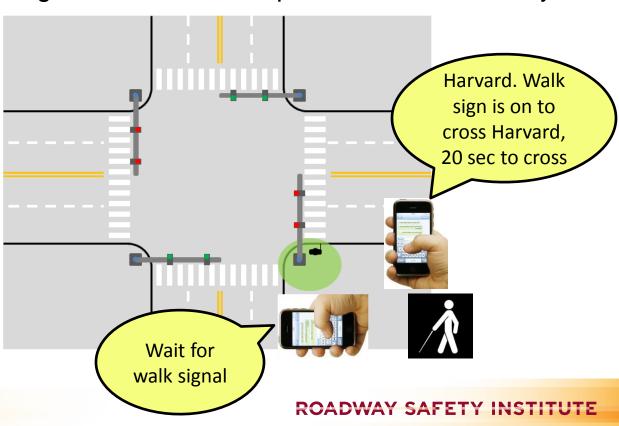


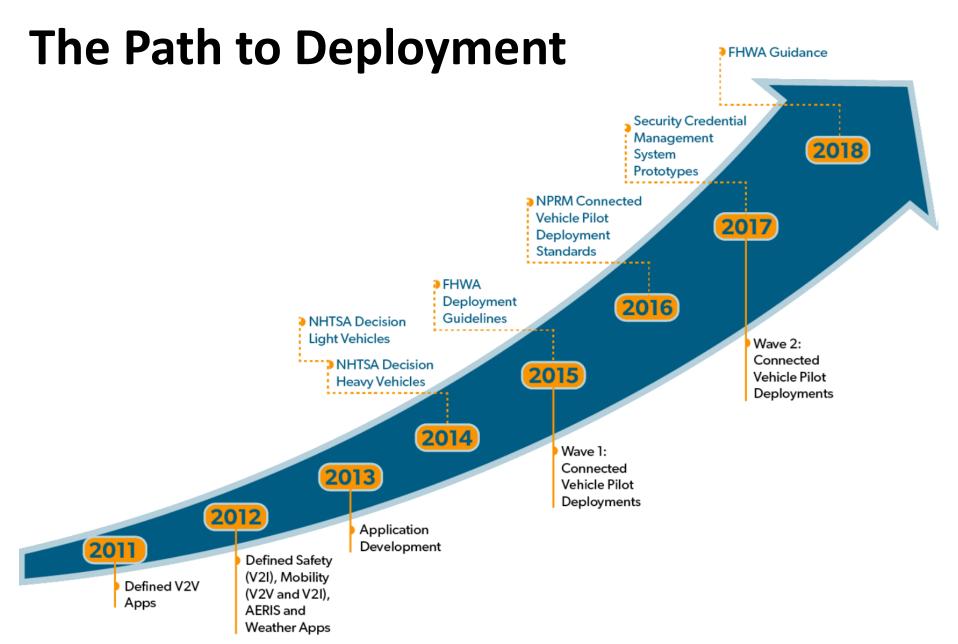
MAPS User Interface

Geometry Information

- Single tap for orientation and geometry information
- Text-to-Speech message

MAPS User Interface


Signal Information


- Double tap to confirm crossing
- Send walk phase request to traffic signal controller
- Obtain signal timing information

Vibrate and announce signal info when walk phase is on. No sec. by sec.

countdown update.

Source: USDOT

THANK YOU!

